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We present work that specifically pertains to the rendering stage
of stylised, non-photorealistic sketching. While a substantial
body of work has been published on geometric optimisations, sur-
face topologies, space-algorithms and natural media simulation,
rendering-specific issues are rarely discussed in-depth even though
they are often acknowledged. We investigate the most common
stylised sketching approaches and identify possible rendering opti-
misations. In particular, we define uncertainty-functions, which are
used to describe a human-error component, discuss how these per-
tain to geometric perturbation and textured silhouette sketching and
explain how they can be cached to improve performance. Temporal
coherence, which poses a problem for textured silhouette sketching,
is addressed by means of an easily computed visibility-function.
Lastly, we produce an effective yet surprisingly simple solution to
seamless hatching, which commonly presents a large computational
overhead, by using 3-D textures in a novel fashion. All our optimi-
sations are cost-effective, easy to implement and work in conjunc-
tion with most existing algorithms.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms� I.3.5 [Computer Graphics]:
Computational Geometry and Object Modelling—Boundary rep-
resentations� I.3.5 [Computer Graphics]: Computational Geome-
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sentations� I.3.7 [Computer Graphics]: Three-Dimensional Graph-
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Amongst the established non-photorealistic (NPR) rendering styles
(cartoon, sketching & painterly) the sketching style has by far at-
tracted the most attention of researchers. As we show in Section 2,
most published work addresses such issues as:

� Geometric Optimisations (edge traversal, mesh-
simplification)
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� Image-space / Object-space / Hybrid-space considerations

� Surface topologies

� Natural Media Simulation

As yet, very little work addresses rendering-specific problems
for stylised sketching and we attempt to narrow this gap. In order
to identify rendering-specific problem areas for stylised sketching,
we recognise the following prevailing sketching styles:

� Outlining or Silhouette rendering – In this style, lines are
drawn which usually approximate the silhouette of an object
in order to define its shape while neglecting such properties as
texture or shading.

� Hatching or Cross-hatching – In this style, the main focus is
the simulation of shading information and/or surface topology
through the use of hatching-strokes of varying densities.

Within the outlining style, there are two main approaches to ren-
dering a silhouette in a stylised fashion:

� Geometric Perturbations: The geometry of an object is ran-
domised in order to simulate realistic imperfections. Render-
ing is usually performed using line-primitives.

� Stroke-textures: The geometry of the object is left intact, but
imperfections and/or natural media are simulated through tex-
tures, which are applied to bill-boarded (viewer-oriented) ex-
tensions of the original geometry. The drawing primitives are
therefore textured quadrilaterals or triangle-strips.

Typical rendering-specific issues exist with each of these render-
ing styles. We identify the main problems as:

� Overhead in computing uncertainty-functions1 on-line and
applying them homogenously (General Outlining)

� Temporal incoherence for silhouette rendering (Textured Out-
lining)

� Smooth shading-boundaries for textured hatching (Hatching)

While discussing these problems, we produce highly optimised
sample solutions to the most commonly used sketching approaches.
Since our work focuses on the rendering side of sketching, it can
seamlessly extend many of the optimisations and techniques of
other authors.

1See Section 3 for a definition of uncertainty-functions.
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[Markosian et al. 1997] introduce a system which can render in a
variety of outlining styles (exact – following object geometry, ran-
domly perturbed and with texture attributes, hinting at pencil or
chalk lines). Their main innovation is a very rapid, probabilistic
edge detection algorithm.

[Northrup and Markosian 2000] present a hybrid algorithm that
works in both object and image space. Firstly, the silhouette of
an object is detected in object-space as described in earlier work
by [Markosian et al. 1997]. Then, the silhouette is projected into
image-space and a series of operations and decisions is performed
to generate long, continuous curves from the polygonal fragments
comprising the visible silhouette in image space.

Deussen et al show a rather specialised use of a Pencil-and-Ink
technique in [Deussen and Strothotte 2000]. Their main goal is
to render trees (but shrubs and bushes can also be produced) in a
distinct NPR style.

[Raskar and Cohen 1999] use “fattening of lines” (extending the
back-facing polygon of an edge outwards) and limited texturing to
produce what they call “Image Precision Silhouette Edges”. While
their method could more efficiently be implemented using textur-
ing and thick lines (such as can be produced with OpenGL) they
take great care to avoid resolution problems associated with depth-
buffers of limited bit-depth through processes called z-scaling and
line-fattening. Raskar later developed an extension of this ap-
proach in [Raskar 2001], where he shows how a standard rendering
pipeline can be modified to incorporate the generation of Silhou-
ettes, Ridges, Valleys and Intersections.
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[Praun et al. 2001] use tonal art maps, which are intimately related
to mip-maps (and are implemented through these), to place stylised
strokes (dots, single lines or hatches) on the surface of 3D mod-
els. This is done in object-space (as opposed to the image-space
approach followed by [Lake et al. 2000] and ourselves) to follow
isoparameter curves on the surface of objects.

[Rössl and Kobbelt 2000] use a three-stage system, which works
on triangulated meshes to produce line-art drawings in a technical
style. In a multi-step semi-automatic process, hatches are placed
onto surface geometry in order to aide manual conversion of 3-D
models to line-art drawings.

Another rather technical approach by the same authors [Rössl
et al. 2000] is mostly concerned with surface topologies and analy-
sis of curvature gradients on these surfaces.

[Lake et al. 2000] use projective texturing with four different
textures to implement their pencil stroke (hatching style) inker.
As textures can only be applied to complete geometric primitives
(as opposed to parts thereof), they have to implement a geometry
sub-division algorithm, to align primitive boundaries with shading
boundaries.

[Hall 1999] presents a technique which he calls “Comic-strip
rendering”, but which we categorise as a primarily hatching style.
It involves a two-stage rendering scheme and procedural textures to
generate hatches on surface geometry and is intended to be plugged
into a ray-tracing application.

[Sousa and Buchanan 1999a], [Sousa and Buchanan 1999b] de-
vise a realistic natural media simulation system. They model phys-
ically realistic pencils and are able to apply these to surface geom-
etry.
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Amongst other criteria already mentioned, we can differentiate be-
tween artistic/manual and technical sketching. While technical
sketching is probably the most commonly found in the real world
(manuals, textbooks, illustrations, etc.) it is also more easily au-
tomated than artistic sketching. This is because both styles rely on
the same basic drawing primitives (lines, edges, dots, etc.) and tech-
niques (outlining, hatching, stippling, etc.), but the artistic sketch-
ing requires an additional artistic or human component.

This is usually achieved by introducing imperfections into the
rendered image. While various possible imperfections are defined
and discussed in the literature, we would like to formalise this dis-
cussion by introducing the concept of uncertainty-functions.

Definition 1 An uncertainty-function is the functional representa-
tion of a human-error component. The input to an uncertainty-
function is the original object, while the output of an uncertainty-
function is the object with added human-error variations.

Various basic uncertainty-functions can be concatenated in order
to produce a combined uncertainty-function as in Figure 1.

a) Repeat

b) Perturb

c) Offset

d) Combined

Figure 1: Individual and combined Uncertainty-functions

We can identify uncertainty-functions in all manual sketch ren-
derers. They are most explicitly present in geometric perturba-
tion sketching, where object geometry is usually displaced and
perturbed (i.e. Figure 1b and c), before being rendered into the
screen-buffer. More often, we find them pre-concatenated in the
form of textures (e.g. a bitmap of Figure 1d), which allows for
efficient caching of the uncertainty-functions. Since caching can
considerably increase performance, we discuss in Section 3.1 how
it can be achieved for the geometric perturbation approach. The
consequences of applying cached and therefore static uncertainty-
functions are discussed in 3.2.
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The texturing approach represents a form of caching of concate-
nated uncertainty functions, thus saving the cost of performing con-
catenations on-line. Next to other advantages like thick lines or
natural media textures, there are also disadvantages to the texturing
approach, foremost the need for bill-boarding, i.e. the screen-space
orientation of textured elements towards the viewer.

We therefore discuss how caching of uncertainty-functions sim-
ilar to the texturing approach is possible for purely geometric per-
turbation sketching.

Displaylists are available on all modern 3-D graphics cards and
allow for fast retrieval of rendering information (vertices, colours,
etc.) by storing relevant data on the card’s internal memory. It
seems obvious how displaylists could be used to cache the nec-
essary uncertainty-functions for geometric perturbation sketching.
Unfortunately, displaylists can only hold static data which would be
equivalent to applying uncertainty-functions once-off upon loading
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an object. This would result in a static representation of the object
and look unconvincing under animation. What we want to achieve
is a dynamically changing look similar to a rough stop-motion se-
quence.

Our solution is therefore to cache uncertainty-functions as ap-
plied to only one edge instead of the entire object. In this way
all the required human-error imperfections can be stored in various
displaylists and recalled when needed.
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Desired Edge

Unit Vector on x-Axis
Scale to desired length

a) b)

c) d)

Rotate Translate

Figure 2: Preparing an Edge for use with Displaylists

The way we utilise these displaylists to render an object is as fol-
lows. First, we dissect the object into its relevant edges (for a closer
discussion on relevant edges and importance-functions, see [Win-
nemöller 2002]) and then compute the transformations required to
transform a unit-vector along an arbitrary axis (we have chosen the
x-axis for simplicity) to each of these edges. These transformations,
as shown in Figure 2, can all be expressed in matrix notation and
multiplied together to form a single transformation matrix for each
edge. Now, instead of rendering a unit-vector and transforming it,
we render a given displaylist instead so that the transformation is
applied to it as a whole. The very simple and efficient algorithm
implementing this approach is shown in Listing 1.
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Since uncertainty-functions cached in displaylists are just as static
as those cached in textures, the following discussions pertain to
both rendering solutions.
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Whether scaling a displaylist as in Figure 2b) or selecting texture
co-ordinates for the same purpose, we have to deal with the is-
sue of applying the same uncertainty-functions to edges of different
lengths. As becomes evident from Figure 3, the same uncertainty-
function can look considerably different when stretched by differ-
ent factors. To produce a homogenous look, we have to address this
matter.

Figure 3: Different longitudinal Strech-factors for a Sketchy Line

For the texturing approach there exists a simple solution as

we can use texture clamping and/or repetition in order to fix the
uncertainty-density with respect to length.

The geometric perturbation method is a bit more difficult to deal
with, because it lacks the inherent clamping and repetition capa-
bilities of texturing. Our solution here is to increase the number
of available uncertainty displaylists. We already have various dis-
playlists to allow us to animate the uncertainty-function of a whole
object, now we simply increase this number slightly, to allow for
edges of different lengths. We do this by computing a histogram of
the edge-lengths of an object and assigning several displaylists to
each bin so that displaylists of different bins are related in their
uncertainty-densities through their respective bin-sizes. Within
each bin, edges are stretched to fit the bin-size. The homogeneity
of this approach then depends on the number of bins allocated.

The measure we use to determine uncertainty-density is cho-
sen relative to the object-space dimensions of an object, so that
uncertainty-functions scale with the object.
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By pure geometric definition an edge does not have a width asso-
ciated with it, but in both the texturing approach and the geometric
perturbation approach, we artificially widen edges in order to apply
uncertainty-functions to them ([Raskar and Cohen 1999] call this
fattening of lines). While it would be easy to keep this lateral stretch
factor constant throughout the object, this can conceal finer object
detail, as we show in Figure 4a). Object detail with high spatial cur-
vature like the nose, eyes and horns consists of many short edges,
which are over-emphasized when a constant lateral stretch factor
is applied. Figure 4b) shows our approach in contrast. Widths are
scaled by an amount proportional to the length of an edge. While
this deals effectively with short edges, it produces a similar problem
for long edges. We address this problem by clamping the width-
factor to a maximum value if necessary.

a) b)

Figure 4: Different Stretch-width Approaches: a) Constant� b)
Edge-length dependent

As in Section 3.2.1, both the width-scaling factor and the clamp-
ing value are chosen relative to the object-space dimensions of the
object. For additional examples of objects rendered with our choice
of longitudinal and lateral stretch-factors, see Figure 12a) and b).
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In renderers like the geometric perturbation sketcher discussed in
Section 3, where a fair amount of visual noise is present, the effects
of edge-popping are disguised by the constantly changing silhou-
ette. Most texture sketch renderers, on the other hand, do not use
animated uncertainty-functions and the sudden appearance and dis-
appearance of edges becomes noticeable and distracting.
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The root of the problem is the silhouette-condition, which deter-
mines whether a given edge lies on the silhouette of an object for
the current view-point. Figure 5 shows the possible configurations.
Configuration b) has the viewer looking onto two front-facing faces
and the edge joining the two faces is not part of the silhouette. The
same holds for configuration c), where both faces are back-facing
with respect to the viewer. Only in configuration a), where an edge
is part of a front-facing and a back-facing face, is the edge-condition
fulfilled. The signs mark whether the dot-product of the normal of a
face with the view-vector is positive or negative. We could therefore
rephrase the silhouette-condition as being fulfilled if the product of
the above-mentioned dot-products is negative.

−

+

− −
+ +

a) b) c)

Figure 5: Possible Edge-configurations

It should be obvious that this condition is binary, i.e. it is either
fulfilled or not and the changeover is instantaneous. This is the
reason for edge-popping. Our solution is therefore to change the
condition to a fuzzy one, which means that an edge can either be on
the silhouette, not on the silhouette or somewhat on the silhouette.
This allows us to fade edges in, which are about to become visible,
and fade those out which are about to become invisible, but the
problem then becomes how can we predict what edges are about to
do? Our answer is as simple as it is effective, and in fact has already
been mentioned above.
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Figure 6: Visibility-function for Edges

The solid curve in Figure 6 shows a first approximation of the
product of dot-products measure (the actual curve depends on the
angle between faces and orientation towards the viewer). In the
shaded region, where the curve is negative, the silhouette-condition
is fulfilled, while in the other regions it is not. The dotted curve,
representing edge-visibility, would normally exhibit discontinuities
at the boundaries of the silhouette-condition region (i.e. shaded
region), but we defined a slightly sloping visibility-function instead.
Two points should be noted. Firstly, the shape of the solid curve is
in general not identical to that in Figure 6 , but can be assumed to
be symmetrical. Secondly, the shape of the visibility function is
arbitrary and can easily be user-defined and customised. Its rising
point determines how many edges are at least partially visible and
therefore has an in�uence on the number of edges rendered. The
width of the slope determines over how many degrees edges are
faded in and out. The slope itself need not be a straight line at
all and could be modified to implement accelerated fading. For
the sake of performance and configurability, we implemented our
visibility-function in form of a look-up table and achieve pleasing

visual results for a fade-span of 5-8 degrees.
In summary, the product of dot-product measure in connection

with a suitable visibility function can be used to eliminate edge-
popping completely in an extremely simple and efficient fashion.
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Hatching or cross-hatching is another popular NPR sketching style
and commonly implemented by texturing the surface of an object
with aligned stroke textures. The stroke density and placement of
these textures is chosen so that textures with fewer strokes are sub-
sets of those with more strokes as shown in Figure 7a). The local
choice of texture is performed as a function of light-intensity (usu-
ally the diffuse component of the Phong re�ection model) at a given
vertex in order to represent shading through stroke-density.

1

2

4

3

12

4

3

a)

b)

Figure 7: Hatching Textures: a) Various interdependent Densities�
b) Combined

Various methods exist to place strokes onto the surface geom-
etry of an object. Some authors affix textures in screen-space by
applying projective texturing (e.g. [Lake et al. 2000]), others pa-
rameterise their surfaces in order to affix textures in object-space
(e.g. [Praun et al. 2001]), but all face the same problem: Achieving
smooth shading boundaries. This problem arises, because shading
boundaries (the dotted diagonal lines in Figure 7b) do in most cases
not align with geometric boundaries. To address this issue, several
solutions exist. [Lake et al. 2000] sub-divide their surface geom-
etry until shading boundaries do coincide with geometric bound-
aries. [Praun et al. 2001] use lapped textures and blend 6 textures
in multiple rendering passes to solve the problem. Most other solu-
tions also use multiple rendering passes, usually dependent on the
number of discrete hatching textures. All of these solutions repre-
sent a considerable computational overhead as well as an increase
in geometric information which has to pass through the graphics
pipeline.

We present a novel solution, which works in a single rendering
pass, independently on the number of hatching textures to be used.
The keyword to our approach is 3-D textures. These have been
around for a while, but so far not been recruited for NPR hatching.

Figure 8 shows how we form a 3-D texture by stacking the
above-mentioned stroke-textures on top of each other. While do-
ing so, we repeat textures several times, but with increasing trans-
parency so that textures of lesser stroke-density will appear lighter
and blend with background elements. Our method can be used with
any previous approach, as we place no restrictions on our 3-D tex-
ture being fixed in screen-space or object-space. The lighting value
of a vertex can be used directly to index into the added, third di-
mension and texture interpolation can be used to blend smoothly
between adjacent textures.

Two disadvantages exist with our method. Firstly, a 3-D tex-
ture of sufficient spatial resolution requires a lot of texture memory
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Figure 8: A stack of 2-D textures forms a 3-D texture

(typically about 2MB), but we argue that modern graphics easily
offer this amount of storage capacity. In addition to that, conven-
tional 2-D textures would also require the same order of magni-
tude of memory. Secondly, while 3-D textures have been part of
the OpenGL specification since version 1.2, they are not yet imple-
mented in hardware by many vendors. We believe this will change
with new generations of graphics cards.
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Even though the optimisations discussed in this paper are intended
to be used in connection with existing systems, and performance
values are therefore application-dependent, we demonstrate the
possible performance increase of our object-segmentation approach
in Figure 9. The recursive algorithm trace shows the performance
of a geometric perturbation sketcher, which calculates uncertainty-
functions on-line. The object-segmentation trace represents the
same renderer with caching of uncertainty-functions. Compared
to the first trace, caching has in this case improved performance 26-
133%. The texture-sketching trace is shown for comparison pur-
poses. In absolute terms, we are able to render 800-15,000 edges
at 25-270 frames per second on a PentiumII 500 with GeForce 256,
without any geometric approximations (e.g. smart edge-traversal,
etc.)

274.8

192.8

148.9

102.6

45.2
25.1

0

50

100

150

200

250

300

100 1000 10000 100000Total Edges

FP
S

Recursive Algorithm Object-Segmentation Texture Sketching

Figure 9: Performance Comparison

Examples of the increased temporal coherence achieved by our
visibility-function can be seen in the Edge-fading animation accom-
panying this paper. Figure 10 illustrates a typical scenario. The
edges marked by arrows are slowly faded out with our optimisation
instead of suddenly disappearing as would normally be the case.

Another animation is provided, demonstrating the smooth con-
tinuous hatching-boundaries that can be produced in a single ren-
dering pass using our proposed 3-D texture approach. In this ani-
mation a single quadrilateral is textured using a 3-D texture. Each

Figure 10: Screen-shot of Temporal Coherence Animation

vertex is assigned a different lighting value according to Figure 11
and the quadrilateral is rotated relative to the light-source so show
the hatching-boundaries move over the surface.

Figure 11: Illustrated screen-shot of 3-D texturing Animation

Rendering examples of a real-time system which uses our opti-
misations can be see in Figure 12.
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We have categorised sketching styles from a rendering point-of-
view into:

� Outlining styles

– Geometric Perturbations

– Stroke-Textures

� Hatching style

Key rendering problems associated with each of these styles
were successfully addressed.

The computational overhead of perturbing object geometry on-
line was investigated. We defined so-called uncertainty-functions,
which allow for a formalised discussion of human-error compo-
nents in artistic rendering. By examining uncertainty-functions in
textured outlining, we developed an equivalent method of caching
these functions for the geometric perturbation style. Applying
cached uncertainty-functions in either style was solved by defining
appropriate scaling-functions for longitudinal and lateral stretching.

We provided an efficient and powerful solution to the temporal
coherence problem of textured outlining (edge-popping), by devis-
ing a scheme in which edges are automatically faded in and out of a
scene as they are about to appear or disappear. Our solution uses a
user-defined visibility-function, which can be set to adjust the num-
ber of edges rendered, the range over which edges are faded, as well
as fading speed and acceleration.

We identified the key problem of hatch-rendering as that of pro-
ducing smooth hatching boundaries. Previous solutions are com-
putationally expensive and/or require multiple rendering passes.
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Listing 1: Pseudocode to sketch geometrically perturbed lines using cached display-lists

We show that 3-D textures are ideally suited for hatch-style ren-
dering and how they can be used to produce smooth, geometry-
independent hatching-boundaries in a single rendering pass for as
many hatching-textures as desired.

In summary, we identify the main rendering problems of estab-
lished stylised rendering styles and provide viable and efficient so-
lutions, all of which can be used in connection with most existing
sketching systems.
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